منابع مشابه
On Quasiconformal Harmonic Maps between Surfaces
It is proved the following theorem, if w is a quasiconformal harmonic mappings between two Riemann surfaces with smooth boundary and aproximate analytic metric, then w is a quasi-isometry with respect to Euclidean metric.
متن کاملReversible Harmonic Maps between Discrete Surfaces
Information transfer between triangle meshes is of great importance in computer graphics and geometry processing. To facilitate this process, a smooth and accurate map is typically required between the two meshes. While such maps can sometimes be computed between nearly-isometric meshes, the more general case of meshes with diverse geometries remains challenging. We propose a novel approach for...
متن کاملMeasured Foliations and Harmonic Maps of Surfaces
Fix a Riemannian surface of negative curvature (N, h), and a differentiable surface M g of the same genus g that will host various structures. Also fix a diffeomorphism f0 : M → N . It is well known ([ES], [A], [SY1], [Sa]) that to every complex structure σ on M , there is a unique harmonic diffeomorphism f(σ) : M(σ) → (N, h) homotopic to f0 : M → N ; one is led to consider what other, possibly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 1985
ISSN: 0294-1449
DOI: 10.1016/s0294-1449(16)30393-6